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A direct solution method for solving elliptic pde’s of the type 

k,(z). azq/ax2 + k,(2). a2'p/ay2 + k, . a*q/az* + O(Z). up =f(x, y, z) 

in 3D parallelepipeds with k, = const and k,(z), ky( ), ( ) 2 d z continuous functions of z, is 
presented. The spatial derivatives are approximated using the Hermite approach (Mehrstellen- 
verfahren) with 0(h6) truncation error for Dirichlet boundary conditions or for periodic 
solutions of the problem. For Neumann conditions, it seems that in order to retain the direct 
character of the numerical algorithm employed, one should approximate the first spatial 
derivatives on the boundary by means of conventional schemes having a truncation error of 
O(h3) type rather than O(h6) which accordingly reduce the overall accuracy of the results. 
Despite the substantial reduction of the overall accuracy for Neumann conditions, this case 
has not been exluded, because the structure of the difference equations remains invariant for 
problems in which instead of known values of first-order normal derivatives at the boundaries, 
these very boundaries constitute symmetry planes of the solution. This feature allows a direct 
solution method to be used for such a problem, whereas the 0(/P) truncation error of the 
difference schemes employed is retained. The given pde is discretised on a three-dimensional 
grid and the set of difference equations is formulated as a linear system of matrix equations 
whose solution is found by a suitable decomposition of unknows based on knowledge of the 
eigenvalues and eigenvectors of simple tridiagonal matrices. A hint for extending the 
applicability of the method-by means of a coordinate transformation-in cylindrical 
domains with an annular cross section, is also given. 0 1990 Academic Press, Inc. 

INTRODUCTION 

Interest in solving elliptic pdes in 3D rectangular parallelepipeds-at least from 
the point of view of applied sciences-is due among other reasons to models which 
simulate a number of processes in steady state heat conduction or in electrical 
potential problems of box-shaped regions, in incompressible fluid dynamics [9], in 
some natural processes in the atmosphere [13], as well as in certain problems of 
semi-bounded plasmas [6]. 

However, even for elliptic pdes in three-dimensional domains more complicated 
than rectangular parallelepipeds, a class of solution methods known as “capacitance 
matrix methods” uses as an intermediate step the solution of the original pde in a 
3D rectangular parallelepiped containing the domain [lo]. 
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Since the computed solution must be a good approximation of the exact one, it 
is obvious that for economy reasons one should use the highest possible order of 
a difference scheme, 

For the classical Spoint approximation related to O(!z4) truncation error, a criti- 
cal survey of a number of direct methods for the solution of the Poisson eq~~t~o~ 
in a plane is contained in [ 121. Direct methods for solving Poisson equation in 
rectangular parallelepipeds-using 7-point approximation schemes-are present 
in [Id]. 

Another approach in solving the system of difference equations related to Poisson 
pde in 3D boxes, would be to reduce the problem to a number of Helmholtz’s e 
tions in two dimensions, e.g., considering the Fourier transform of the ori 
equation with respect to z. The next step would be to use a direct method-see e.g.. 
[I I] in which a method with a fourth-order accuracy is discussed-for solvin 
numerically the system of difference equations related to each of the “transformed 
Helmholtz’s equations in two variables and then employ an additional Fourier 
transform to find the desired solution. 

The method presented in this paper for the direct solution of Helmholtz’s p&s 
(with coefficients dependent on z) in 3D rectangular parallelepipeds is based on the 
formulation of the set of difference equations as a linear system of matrix equati 
having as unknowns a number of two-dimensional matrices. The structure of 
system is such that for Dirichlet boundary conditions or for periodic solutions of 
the problem, the local truncation error is of the O(h6) type, whereas for ~e~rna~~ 
conditions is of the O(h3) type. 

For solving the system of matrix equations in question, a series of trigonometric 
transforms is applied on the unknown matrices as well as on the data thus leadi 
to an ensemble of “transformed” tridiagonal systems Finally, another series 
trigonometric transforms applied to the solution of the above tridiagonal syste 
results in the discrete solution of the original pde. 

STRUCTURE OF THE DIFFERENCE EQUATIONS 

The second spatial derivatives of 

k,(~).a2~/ax2+k,(~).a2~/ay2+ k,. a2~/az*+a(z)."P=f(X,Y,Z) 

can be approximated at a point (x, y, z) either as a linear combination of q-values 
(conventional method) or as a linear combination of both cp-values and 
p-derivatives at neighbouring points (Hermite-type method, ~ehrste~lenverfahre~). 

For discretising (l), a three-dimensional grid with spacings h,, h,, ii, which 
covers the rectangular region a x b x c is established and an interior node (i j, k) is 
considered whereas the total number of interior points relative to directions X, y, 
and z is equal to I, m, and,n, respectively. 

For second derivatives approximation at the interior grid point (19, k), 
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type schemes (Mehrstellenverfahren) which are related to O(h6) truncation error, 
are employed. 

Based on the approach presented in [9] and after making a more or less obvious 
extension of the scope of the analysis, one concludes that there exists a linear rela- 
tion between the values of k,(z) . a2~/dx2 + k,(z). d2q,Gy2 + k, . a2~,/az2 and cp at 
the 27 grid nodes around (i, j, k). However, utilising the pde (1) itself, it is seen that 
k,(z). a2@.x2 + k,(z). a2@y2 + k, I d2@z2 is in effect equal tof(x, y, Z) - a(z). cp 
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and consequently the previous linear relation between q and k,(z). c?I’cP/&’ + 
k,(z) . a*@$ + k, . a2q/dz2 is finally transformed to a linear relation between 
cp- and f-values at the 27 nodes around (i, j, k). This latest relation is expressed in 
schematic form by Fig. 1. 

The formulation of the ensemble of these difference equations as a compact linear 
system of matrix equations with two-dimensional matrices as unknows is next 
presented in some detail for Dirichlet boundary conditions. This case, apart from 
constituting a familiar type of an elliptic boundary va1u.e problem, also exhibits all 
the essential features of the method. 

IIowever, the modifications required for problems with periodic solutions or 
Neumann conditions will also be indicated. 

COMPACT FORMULATION OF THE DIFFERENCE EQUATIONS 

In all cases of forming the difference equations of the problem as a system of 
matrix equations, it is assumed that a 3D grid with steps h,, h,, h, and with 1, m, n 
interior nodes concerning the directions x, y, and z, respectively, has been esta 
lished. The compact formulation emerges after the difference equation of the node 
ijk (see Fig. 1) is written in such a way, that the introduction of suitable tridiagon~I 
or almost tridiagonal matrices for expressing the ensemble of these equations is in 
effect suggested by this form of writing. 

More specifically, one can see that the linear relation connecting the 27 no 
values around ijk (see Fig. 1) can be written 

c~~z~~1~(Pi-ljk-l+c~~z~-~1)~7ijk-1/2+c~~z~-~I)54i+ljk~1 

$Cs(Zk-I)C~I--Ij--Ik--++~+Ij~Ik--l 

+C8(Zk-1)C~i-lj+lk-l++q)i+lj+lk-11 

+~ij-Ik-l1c-l~Zk-l~+(Pijk--l~C~~Zk-l~/2+(Pij+:k~1~~,~Zk--I~ 

+ c3(zk) (Pi- ljk + cl(zk) (pijk/2 + Cj(Zk) (pi+ Ijk 

+ c5(zk)[qi- lj- lk + q7i+ lj- lkl + c5(zk)cpi- lj+ :k + (Pi+ Ijt Ikl 

+ qq- Ik ’ c2(zk) + (Pijk ’ cl(zk)/2 + qo,, lk dzk) 

~C~~Zk+l~~i-~jk+l~C~~Zk+l~~7ijk+l/2~C~~Zk+l~(Pi+ljk+1 

~C~(Zk+l)~~)i-~j-~k+l+(Pi+?j~lk+I~ 

+c8(zk+l)~~i-lj+lk+l+(Pi+Ij+lk+1 

+~ij-lk+l~C~~Zk+l~+(Pijk+1~C~~Zk+l~/2+(Pij~Ik+!~C~~Zk+l~ 

= Linear combination off-values around ijk. (2) 
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The structure of the already mentioned tridiagonal matrices depends on the 
boundary conditions and is given next for Dirichlet, periodic, and Neumann 
conditions. 

Dirichlet Boundary Conditions 

The Ix m x n unknowns of the problem are arranged in n rectangular matrices #k 
(k = 1, 2, . . . . n) with I rows and m columns, where #k contains the values of cp’s at 
the “level” zk (zk = (k - 1). h,). For Dirichlet boundary conditions at the faces of 
the parallelepiped the matrices &, and #,+ I contain the known q-values at the 
boundaries z = zO and z = zO + c. The linear combinations of the f-values at each of 
the 1 x m nodes of “level” zk have been arranged in a Ix m matrix RHS, 
(k= 1,2, . . . . n), where the first and last rows as well as the first and last columns 
have “incorporated” the boundary values of cp at the faces which are perpendicular 
to x and y, respectively. 

Using the explicit form (2) of the typical difference equation’for the ijk node, one 
can verify that the Ix m x y1 equations (2) associated with the “level” zk can be 
written as a matrix equation of the type, 

AICC4(Zk-1)/2, G&k-111 .$k--l 

+cs(z,-l)~A,CO, ll~L-1.&CO, 11 

+dk-1 *A?zCc&-,Y2, CAZk-111 
+ AIL-Cl(ZJIZ G(Zk)l .dk 
+ C&k) .A,CO, 11 .h.A,CO, 11 

+ 4k .&Cc,(zk)I2> &k)l 

+ AlCC4(zk+ I)/22 c&/c+ 1)1.d/c+ 1 

+c&k+l)~4Co, ~1~hc+1~4nCO, 11 

+~k+l.A,Ccq(zk+1)/2,~7(zk+1)1=RHSk. (3) 

In the above relation the symbols A,[ , ] and A,[ , ] denote symmetric 
tridiagonal matrices of order 1 and m, respectively, which are defined as follows: 

A,[p, q] = a symmetric tridiagonal matrix of order v with all the diagonal 
elements equal to p and all the non-zero off-diagonal ones equal 
to q. 

For k = 1, 2, . . . . n the above matric equations constitute a matrix system with n 
two-dimensional matrices dl, &, . . . . 4, as unknowns, whose solution will be 
examined in the next section. Such an approach of compact formulation of a set of 
difference equations as a matrix equation has been used for Poisson’s equation in 
a rectangle [ 11. In this context an equation of the type A,4 + dA, = RHS is proved 
to be equivalent to the set of difference equations which approximate the original 
pde using the conventional 5-point difference scheme with O(h4) truncation error. 
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Periodic Boundary Conditions 

For the case of periodic solutions, e.g., with respect to x-direction and Diric 
conditions with respect to y and z, a fictitious set of nodes at the plane x =x0 -- h, 
is considered and the basic difference equation (2) is written for the nodes O$ 
which in effect constitute the intersection of the plane x = x0 with the “level” zk. In 
the present case, due to the periodicity of the solution with respect to x-direction, 
the role of cp-rjk’s is played by the prik’s which lie in the intersection of the plane 
x=x0 + a - h, and the “level” zk. The matrix of unknows 4, at the ‘“leve 
has m columns but the number of its rows equals now I-!- 1 and the same 
the matrices RI-IS, which contain the values ofJ: The appearance of an a 
line in matrices dk and RHS, in conjunction with the fact that all the CP _ ij~-values 
in (2) should be replaced by cpVk-values suggests that the square matrices of the type 
A, [ , ] in (3) should be replaced by square matrices of the type B,, 1 [ , ] whose 
structure is defined as follows: 

B,[p, q] = a matrix of order v differing from the already introduced sym- 
metric matrix A,[p, q] in that its uppermost NE and its lowest 
SW corner elements equal q instead of being zero. 

The form of the matrix equation (3) for the above special type of periodic condi- 
tions emerges after the matrices A,[ , ] have been replaced by [+ 1 [ , ] matrices 
provided, of course, that both dk and RHS are now (I+ 1) x m matrices. 

Exactly the same kind of arguments can lead to a compact matrix formulatio 
of the difference equations for periodic solutions with respect to y only, where 
instead of premultiplications of $‘s (which are now ix (m + 1) matrices) by 
B-matrices and postmultiplications by A-matrices, one has exactly the reverse. For 
periodic solutions with respect to both the x and y directions, the @s are pre- an 
postmultiplied by B-matrices only. Finally the periodicity of the solution with 
respect to z, results in a structure modification of the first and last matrix equations 
of the system. The first one now relates the matrices dOi, ~$i, and d,, while the last 
one the matrices d,,, 4, _ i, and &,. 

Neumarzn Boundary Conditions 

When Neumann conditions, e.g., at the plane x=x0 occur, whereas at all the 
other faces of the parallelepiped the conditions are of the Dirichlet type, a fictitious 
set of nodes at t e plane x=x0-h, is again considered and the basic di~ere~~e 
equation (2) is written for the nodes Ojk common to the plane x =x0 and. the 
“level” zk~ If now a conventional approximation scheme of the type 

~oljk=40,jk-2h,a~D,jklax+d)(h3) 141 

is applied at the node Ojk, it is seen that the role of (p-ijk in (2) can be played 
q,jk with the additional restriction that the value of the right-hand side associated 
with Ojk will be modified due to the presence of the quantities 2h,aq,jk/8x. The 
consequences of the above changes in (2) will be to double the coefficients of the 
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close-to-boundary nodes ljk, to make both the matrices 4k and RHSk have (I + 1) 
rows and m columns, and finally to modify the elements of the first row of RHS, 
due to the presence of 2h, . dq,/ax. The above doubling of coefficients of the (pljk- 
values for the difference equations which are associated with the Ojk nodes suggests 
that the square matrix Al [ , ] in (3) should be now replaced by square matrices 
of the type CY,,[ , ] h w ose structure is defined as follows: 

CVU [p, q] = a tridiagonal matrix of order v differing from A,[p, q] only in 
the value of its uppermost off-diagonal element in the first row 
which now equals 2q instead of q. 

For Neumann conditions at x=x0 + a, the 6s are now premultiplied by matrices 
of the type C f+ I [ , ] which are defined as follows: 

C f [p, q] = a tridiagonal matrix of order v differing from A,[p, q] only in 
the value of its lowest off-diagonal element in the last row 
which equals 2q instead of q. 

Finally, for the case of Neumann conditions at faces normal to the y-direction the 
4s will be postmultiplied by transpose C-type matrices instead of being 
premultiplied by such matrices, while for Neumann conditions at faces normal tc 
z, the first and last matrix equation of the system will be suitably modified. 

Although the formulation of the ensemble of difference equations as a system of 
matrix equations with O(h3) truncation error makes possible the use of a direct 
method for the numerical solution of problems with Neumann conditions, it is 
known that the overall accuracy of the results is poor [ll]. However, for problems 
in which instead of known values of first-order derivatives at the boundaries these 
are in effect symmetry planes of the solution-e.g., when cp _ ijk = cp ijk-the structure 
of the difference equations is identical to that referred to homogeneous Neumann 
conditions at the boundaries in question. This feature allows the direct solution 
algorithm presented in the next section to be used for such problems whose discrete 
analog is expressed by approximation schemes with 0(h6) rather than 0(h3) 
truncation error. 

Before closing this section, some comments regarding the above compact matrix 
formulation (CMF) and the tensor product formulation (TPF) [7] seem to be 
necessary. 

For k,, k,, and g constants and when a 7-point difference approximation scheme 
is used, the direct solution algorithms related to CMF which are introduced in the 
next section, can be transferred to TPF. In addition, for the case considered-i.e., 
for 7-point difference approximation schemes-TPF leads to coefhcient matrices 
which have a symmetric block tridiagonal structure with off-diagonal “elements” 
equal to unit matrices. This feature permits the efficient use of cyclic reduction 
methods for the solution of the difference equations and even more to the combina- 
tion of such methods with fast Fourier transforms to speed up the solution process 
c51. 
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For the Helmholtz’s type pde’s considered in this paper when k,, k,, and cr are 
constants, a TPF of the difference equations for the 27-point approximation 
schemes used is still possible. The coefficient matrix is now expressed apart from 
terms, e.g., of the type I, @A, + A, @I, also by terms of the form A, 0 A,. 
Actually a TPF for the set of difference equations for V2q = f and a HE 
approximation scheme with h, = h, = hZ already exists [2, 81~ It is to be noted that 
the employment of a direct solution algorithm based on the existence of such a 
formulation resulted in considerable computational savings when the solution of a 
Poisson equation with a 27-point HODIE approximation scheme in the unit cube 
was considered [g]. 

However, when k, and k, depend on z while rs is not constant but is dependent 
on z, it seems difficult to find a TPF for the ensemble of the difference equations 

(I) corresponding to CMF of the present section and related to high- 
rmite type approximation schemes. Even if some kind of TPF for this set 

difference equations is possible, it is not certain that this TPF will be of sue 
character that one of the tensor product forms introduced in [7] c 
employed and a corresponding solution algorithm could be constructed. 
other hand, the CMF for the difference equations referring to (1) is related in a 
rather unambiguous way to the direct solution algorithm constructed for their 
sofution as it is explained in the next section. 

SOLUTION OF THE SYSTEM OF MATRIX IEQUATI~NS 

The discussion in the last section shows that the system of matrix equations for 
the various boundary conditions has a block tridiagonal structure where the k th 
order equation is of the form 

+Rk+l~k+l+Pk+l~k+lQk+l+~kilSk+l= (5) 

while the first and last equation usually contain two terms of the type 
PdQ -I- &Y. The matrices R, P, Q and S will be of the A, B, or 47 type according to 
the kind of boundary conditions prevailing at the faces of the para~lelepipe~. For 
example, for Dirichlet boundary conditions at all faces, the above equation (5) is 
identical to (3). 

The direct solution algorithm for solving the system of matrix equations, is 
on the fact that all the matrices which premultiply the unknown $‘s have a matrix 
U of right eigenvectors in common and all the matrices postmultiplyi~g $‘s have 
some other matrix V as their common matrix of right eigenvectors. 

The algorithm in question, in essence, is a rather evident extension of the 
so-called “irrational method” related to the solution of the matrix equation 
Rq5 t &§= RHS [ 11. This “irrational method” has already been employed for 
solving this latest type of matrix equation which constitutes the compact form 
of the difference equations when approximating Poisson pdes in rectangles by 
conventional 5-point schemes [ 11. 
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However, before the method can be applied to (5), one must define a number of 
additional diagonal matrices which in effect are the matrices of eigenvalues of R, P, 
Q, and S. 

These definitions run as follows: 

,4 f = diagonal matrix of the eigenvalues d hji of R, which 
premultiplies dk 

/ii = diagonal matrix of the eigenvalues d pkji of Pk which 
premultiplies #k 

Mf = diagonal matrix of the eigenvalues gEji of Qk which 
postmultiplies dk 

Mz = diagonal matrix of the eigenvalues gskji of S, which 
postmultiplies $k. 

(6) 

In the above definitions the number of different values which k can assume varies 
from n to y1+ 2 according to the type of boundary conditions. 

The basic step in solving the ensemble of matrix equations (5), is to premultiply 
each equation by U -’ and then postmultiply it by V. 

After these multiplications have taken place, the modilied form of (5) is 

iT’R,p,4,-, V+ Up’P,-,$k-lQk-IV+ U-‘~,~,S,-, V+ Up1R,q5,V 

+ iTIP&QkV+ Up’qb,S,V+ UplRk+lqbk+lV 

+ U-‘P,+,$,+,Qk+J+ Up1&+lSk+l V= U-’ RHS, V. (64 

This latest equation can be written in an equivalent form as 

(U-1Rk--IU)(U-1~k~1V)+(U-1Pk_lU)(U~1~k--1V)(V-1Qk~1V) 

+(Up1$k--1V)(V-1Sk~1V)+(Up1RkU)(U-1q3kV) 

+(U-‘P,U)(U-‘q5,V)(V-1Q,V)+(U-1&J)(V~1S,V) 

+(U~‘R,+,U)(U-1~k+lV)+(U-1Pk+lU)(U~1~k+lV)(V-1Qk+lV) 
+(Upl&+,V)(V-lSk+lV)=UplRHSkV. (7) 

However, since all the matrices R and P have a common matrix U of right eigen- 
vectors and all the matrices Q and S have also some other matric V of right eigen- 
vectors in common, it follows that in (7) all matrices R and P as well as Q and S 
have been transformed by similarity transformations to diagonal ones. 

In other words, Eq. (7) is equivalent to 

AR k-l yk-,+A~-1~k-lM~~1+yk~1M;T_1+/I~UI,+/I~ykM~ 

+~~~~+/i~+l~~+l+/i~+l~~+l~,e+ly,+l~~+l=~~'RHSkV, 63) 

where the definition !Pk = U -‘dk V has already been used. 
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One considers next the equality of the two ijth elements of both the left- and 
right-hand members of (8). Due to the diagonal form of the A and M matrices, 
this equality-by means of the definitions (6)-leads linally to a relation of the 
following type: 

+ C~~+l)i+~~+l)i~g~+l)j+g~+l)jl~(~~+l~ii 
= (U-’ RHSk V),. 691 

The set of the above equations (9), for all the admissible values of k, constitutes 
in effect a conventional tridiagonal system relating the scalars (Yu,),, 

The solution of a number of such conventional tridiagonal systems by well- 
known methods for all the ordered pairs of indices (i, j) related to nnk~~w~ 
$-values, finally results in calculating the elements of all the Yk matrices. For the 
process in question, the calculation of all the elements of each matrix !Plk does not 
take place in the same computational stage but each tridiagonal system is use 
for calculating a definite element ij for all the Y matrices. After all the matrices 
y”k = U -‘4k V have been determined, the elements of 4s are computed by mea 
of the relation dk = Uul, V-l. 

Obviously the already sketched algorithm would be of limited practical value if 
one could not easily compute the elements of U and V as well as the eigenvalues 
of all the matrices R, P, Q, and S. Fortunately for the A, B, and G matrices, 
both their eigenvalues and their right eigenvectors are given by simple formulae 
dependent on the matrix order as well as on the valnes of its non-zero elements. 

A method for obtaining a formula for the eigenvalues and eigenvectors of 
matrices whose “internal” rows-i.e., those except the first and last-are corn 
of a diagonal element p and two equal off-diagonal ones 4, reduces this problem to 
the solution of a three-term recurrence relation. The two constants of the solution 
are next determined in a manner consistent to the structure of the first and last 
rows. 

A list of eigenvalues and eigenvectors for the A, B, and C-type matrices is given 
in the Appendix. 

SOME PRELIMINARY NUMERICAL EXPERIMENTS 

In this section the results of a series of numerical experiments are presented. 
These results indicate the main characteristics of the algorithm concerning both its 
processing times versus the number of equations, as well as its accuracy. 

The overall accuracy characteristics of the method are more or less known, since 
the basic difference equations which substitute the original pde have a O(h6) trun- 
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cation error, thus leading to fourth-order accuracy for problems with Dirichlet 
boundary conditions or with periodic solutions [9]. 

For Neumann boundary conditions the overall accuracy is not acceptable since 
a number of difference equations with O(h3) truncation error participate also in 
forming the discrete analog of the problem. However, the algorithm can still be 
of use, retaining its fourth order accuracy, for problems in which a number of 
boundaries are in effect symmetry planes of the solution since in that case no 
difference equations with O(h3) truncation error come into play. 

Due to the fact that the accuracy will be of the same order for all cases apart 
from the case of Neumann boundary conditions-for which the algorithm is 
unsuitable anyway-it seems reasonable to choose test problems characterised 
by Dirichlet boundary conditions everywhere since, apart from exhibiting the 
acceptable accuracy of the method, they also constitute more or less familiar 
problems of elliptic pdes. 

Although the method has been designed for problems with k,, k,, and (T 
dependent on z, test problems with constants k,, k,, and CJ will be examined. This 
is done because the coeffkients of a tridiagonal system of type (9) needed to 
calculate a definite ij element for all the Y matrices, vary for the several q-pairs even 
when k,, k,, and CJ are constants. For the case of constant values for k,, k,, and 
CJ, the systems in question are symmetric and of such a character that “symmetric 
Gaussian elimination” can be used for their solution [4]. However, in both cases, 
i.e., when k,, k,, and c are functions of z or when k,, k,, and c are constants, these 
coeffkients are computed either by means of very simple formulae dependent on 
precalculated values of c,(z), . . . . c*(z) at the various zk “levels,” or by using pre- 
calculated values of the scalars d and g themselves. Actually the time needed to 
form the coefficients of the tridiagonal systems (9) is a very small fraction of the 
total time related to the solution of the difference equations after the RHS matrices 
have been formed irrespectively of whether k,, k,, and CJ are constants or they 
depend on z. 

Due to the negligible influence of the time necessary to form the coefficients of 
the tridiagonal systems in question on the total solution time, the processing times 
reported refer to the period starting immediately after all the RHS matrices have 
been formed and ending just before editing the final solution 4. These processing 
times depend strongly on the computer used and the efliciency of the program but 
also on the type of boundary conditions, since this affects the transformation steps 
of RHS matrices to U-l . RHS . V matrices, especially when FFT-type algorithms 
are employed for such transformations [3]. As a matter of fact, the variety of the 
FFT-type algorithms related to the several combinations of boundary conditions 
and the associated increasing complexity of the program as a whole dictated, in a 
sense, the selection of problems with Dirichlet boundary conditions everywhere as 
the only representatives of the method’s fourth-order accuracy. 

For problems in 3D rectangular parallelepipeds with Dirichlet boundary condi- 
tions everywhere, the matrices U and V are of such a character-see also 
Appendix-that sine transforms of RHS matrices are introduced. These sine trans- 
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forms are performed either using precalculated values of the elements of U a 
(Program Version I), or employing FFT algorithms when each of the indices 
and in + 1 is equal to a power of 2 (Program Version II). 

Keeping in mind the basic computational characteristics of the method as these 
have been described so far, it seems more or less justified for the test problems to 
be of the following type: 

Solve V2q + c . cp = f(x, y, z) for Dirichlet boundary conditions on the faces of a 
unit cube (a = b = c = 1) having its center at the origin and edges parallel to coor- 
dinate axes, while the parameter CT is constant, taking, e.g., only one of the values 
9, 0, -1. 

The source term f(x, y, z) is generated through the relation f(x, J, Z) = 
V2p + 0 . cp using test functions cp(x, y, z) of the form ~(x, y, Z) = 
q,(~/a) .qDZ(~/b).~3(~/~), where the functions 40~ (j= 1, 2, 3) are given as fohows: 

cpl(x/u) = cos(7cp, .x/a) 

cp2blb) = Wv2 .~I71 

or 

or 

(p3(z/c) = cos(np, .z/c) or (p3(z/c) = cosh(q, . z/c) 

h,P2,P3 and ql, q2, q3 integers). 

The choice of a product of three symmetric functions as the known solution of 
the problem aims at testing the symmetry of the discrete solution constit~t~~~ a 
reliability test of the algorithm, as well as at reducing the workload when ~orrn~~~ 
the RHS matrices or checking the accuracy of the computed solution. The ~~rner~~ 
cal experiments have been performed on an AMSTRAD 1512 personal computer 
using a FORTRAN 77 compiler with a single precision accuracy of order IO.-” and 
the results are summarised in Tables I, II, and III. 

The results for each case consist of the maximum absolute discrepancy from the 
known solution, while for selected groups of cases mean processing times for both 
the Program Versions I (no FFT algorithms used) and II (FFT algorit 
are also recorded. 

Aiming at some additional information concerning the dependence of processors 
times on the total number of difference equations, the test problem 

V2q = - (n2/a2 + ;n2/b2 + z2/c2) .cos(rcx/a) ctos(ny/b) COS(TCZ/C) 

in 3D rectangular parallelepipeds a x b x c for varying ratios a:b :c and for several 
discretization steps h,, h,, h, is considered. The boundary conditions on every face 
of the parallelepiped are as usual of the Dirichlet type, whereas the results of the 
computations-consisting again of the maximum absolute discrepancy from the 
known solution as well as the processing times for Program Versions I an 
summarised in Table IV. 

Based on the results of all the above numerical experiments, one may conclude 
that the method is indeed characterised by a fourth-order accuracy and t 
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TABLE I 

v*p= . ..(a=b=c=l) 

h,=h,=h, 

114 l/8 l/16 

Test function cp max(s) max(s) max(.s) 

cosh(2x/a) cosh(2y/b) cosh(2z/c) 
cosh(2x/a) cos(ny/b) cosh(2z/c) 
cosh(x/u) cos(2ny/b) cosh(2z/c) 
cos(nx/u) cos(2iry/b) cosh(2z/c) 
cos(nx/u) cos(q/b) cosh(z/c) 
cosh(2x/a) cos(q~/b) cos(rcz/c) 
cosh(2x/a) cos(2ny/b) cos(nz/c) 
COS(KX/U) cos(2ny/b) cos(nz/c) 
cos(27tx/a) cos(2ny/b) cos(2m/c) 
cosh(2x/u) cos(ny/b) cos(271z/c) 
cosh(2x/u) cos(2ny/b) cos(2az/c) 
cos(xx/u) cos(2ny/b) cos(27cz/c) 

Mean processing times (seconds) 
Version I 
Version II 

0.22( -3) 
0.76(-3) 
0.34( - 1) 
0.28( - 1) 
0.16(-2) 
0.13( -2) 
0.28(-l) 
0.23( - 1) 
0.32(-l) 
0.28(-l) 
0.36( - 1) 
0.30( - 1) 

0.48 + .02 
0.64 + .02 

0.14( -4) 
0.46( -4) 
0.20( -2) 
0.16(-2) 
0.99( -4) 
0.81( -4) 
0.16(-2) 
0.14( -2) 
0.19( -2) 
0.16( -2) 
0.20( - 2) 
0.18( -2) 

6.63 k .03 
7.18f.03 

0.37(-5) 
0.14(-5) 
0.12( -3) 
0.99( -4) 
0.50( -4) 
0.36( -5) 
0.99( -5) 
0.83( -5) 
O.ll(-3) 
0.99( -4) 
0.13( -3) 
O.ll(-3) 

110.30 F .23 
78.36 + .19 

TABLE II 

V2q,+(p= . (azb=c=l) 

h,=h,=h, 

Test function (n 
l/4 

max(s) 
l/8 

max(.s) 
l/16 

max(.s) 

cosh(2x/u) cosh(2y/b) cosh(2z/c) 
cosh(2x/a) cos(?ry/b) cosh(2z/c) 
cosh(2x/a) cos(2rcy/b) cosh(2z/c) 
cos(nx/u) cos(2ny/b) cosh(2z/c) 
cos(nx/u) cos(ny/b) cosh(z/c) 
cosh(2x/u) cos(ny/b) cos(nz/c) 
cosh(2x/a) cos(2zy/b) cos(nz/c) 
cos(xx/a) cos(2rcy/b) cos(nz/c) 
cos(2ax/u) cos(2ny/b) COS(~~LZ/C) 
cosh(2x/u) cos(ny/b) cos(2nz/c) 
cosh(2x/u) cos(2zyylb) cos(27[z/c) 
cos(xx/u) cos(2?ry/b) cos(2az/c) 

Mean processing times (seconds) 
Version I 
Version II 

0.22(-3) 
0.79( -3) 
0.35( - 1) 
0.29( - 1) 
0.17(-2) 
0.14( -2) 
0.29( - 1) 
0.24( - 1) 
0.33( - 1) 
0.29( - 1) 
0.37( - 1) 
0.31(-l) 

0.49 * .oo 
0.64 T .02 

0.14(-4) 
0.48( -4) 
0.21(-2) 
0.17(-2) 
O.lO( -3) 
0.84( -4) 
0.17( -2) 
0.14( -2) 
0.19( -2) 
0.17( -2) 
0.21(-2) 
0.18(-2) 

6.63 k .03 
7.16k.04 

0.21(-5) 
0.47( - 5) 
0.13(-3) 
O.lO( -3) 
0.73(-5) 
0.64( -5) 
O.lO( -3) 
0.86( -4) 
0.12( -3) 
O.lO(-3) 
0.13(-3) 
O.ll(-3) 

110.27 + .24 
78.38 f .20 
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TABLE III 

wp-cpcp (a=b=c=l) 

h,=h,=h, 

Test function cp 
l/4 

max(s) 
l/S 

max(6) 

l/16 
max(a) 

cosh(2x/a) cosh(2y/b) cosh(2z/c) 0.21(-3) 
cosh(2x/aj cos(ny/b) cosh(2z/c) 0.73( -3) 
cosh(2x/a) cos(ky/b) cosh(2z/c) 0.33(-l) 
cos(nx/a) cos(2ny/b) cosh(2z/c) 0.27( - 1) 
cos(xx/a) cos(ny/b) cosh(z/c) 0.16( -2) 
cosh(2x/a) cosjny/b) COS(TCZ/C) 0.13( -2) 
cosh(2x/a) cos(2zy/b) cos(xz/c) 0,27(-l) 
cos(7cx/a) cos(2nyylb) COS(PZ/C) 0.23( - 1) 
cos(2nx/a) cos(2nylb) cos(2az/c) 0.32( - 1) 
cosh(2x/a) cos(ny/b) COS(~~TZ/C) 0.27( - 1) 
cosh(2xJa) cos(2nylb) cos(2nz/c) 0.35( - 1) 
cos(nx/a) COS(2Z,!@) cos(2nz/c) 0.29(-i) 

0.13(-4) 
0.45(--4) 
0.19( -2) 
O.16(-2) 
0.97( -4) 
0.79( -4) 
0.16(-2) 
0.13(-2) 
O.18( -2) 
0.16(-2) 
0.20( - 2) 
0.17( -2) 

0.19(-5) 
0.25( - 5) 
0.12(--3) 
0.97(-4) 
0.58( -5) 
0.44( - 5 ) 
0.97( -4) 
0.81( -4) 
&11(-J) 
O.97( -4) 
0.12(-3) 
O.ll(-3) 

Mean processing times (seconds) 
Version I 
Version II 

0.49 & .oo 6.63 * .03 110.28 9 23 
0.65 & .Ol 7.18 & .03 78.35 + .I9 

TABLE IV 

V’q = (Test function: q = cos(nx/a) cos(rzy/b) cos(nz/c)) 

a:b:c 

Number of Processing times (seconds) 
unknowns 

h,=h,=h, (l.m)xn Max(s) Version I Version II 

1:l:l.O l/4 27 0.16( -2) 0.43 0.63 
1:l:l.O l/8 343 0.99( -4) 6.64 7.14 
1:l:l.O l/16 .3375 OSO( - 5) 109.85 78.54 
1:1:2.0 l/4 63 0.16( -2) 0.87 1.26 
!:1:2.0 l/S 735 0X9( -4) 13.78 14.99 
1:1:2.0 l/16 6975 0.46( - 5) 226.18 !6!.42 
1:1:3.0 l/4 99 0.15( -2) 1.26 1.86 
1:1:3.0 l/S 1127 0.95( -4) 20.92 22.90 
1:1:3.0 l/16 10575 0.52(-S) 342.46 244.26 
4:4:0.5 118 2883 0.16( -2) 180.26 79.80 
4:4: 1.0 l/4 675 0.15(-2) 22.79 16.31 
4:4:1.0 l/8 6727 0.90( -4) 410.18 180.54 
4:4:1.5 l/4 1125 0.25( - 3) 37.29 26.69 
4:4:1.5 l/8 10571 0.18( -4) 642.46 282.26 
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maximum absolute error increases when one passes from smooth solutions cp to 
solutions with components which oscillate around a mean value-e.g., like 
cos(2zx/u)-or with components which cause the sixth derivative of cp to take large 
values-e.g., like cosh(2x/a). 

The use of FFT algorithms (Program Version II) seems justified when I+ 1 or 
m + 1 is greater than or equal to 16. When both I + 1 and m + 1 are equal to 16 the 
ratio of the processing times of Program Version 1, (no FFT algorithms used) to 
those referring to Program Version II, is about 1.4 while for I+ 1 and m + 1 equal 
to 32 the value of this ratio increases to 2.3. 

A preliminary estimation of the dependence of processing times T, and T2 for 
Program Versions I and II, respectively, on the number of the difference equations 
(I .m) x IZ, can be worked out using the data in Table IV. From a least squares 
analysis one has 

T,= (113.13)x [(Z/15)~(m/15)]‘~32~(n/15)0~g2 (R’ = 0.95) 

T2 = ( 78.76) x [(Z/15). (m/15)] ‘.06. (r~/15)~~~~ (R2 = 0.92). 

The numbers 113.13 and 78.76 denote the approximate processing times 
when I = m = II = 15 for Program Versions I and II, respectively, using an 
AMSTRAD 1512 personal computer with a FORTRAN 77 compiler associated 
with a 10h6 single precision accuracy. Obviously these parameters will vary 
according to the hardware characteristics of the computer used as well as according 
to the possibilities of the compiler for the programming language employed. 

SOME ASPECTS OF THE NUMERICAL PERFORMANCE OF THE ALGORITHM 

Although the solution algorithm outlined in the previous sections has been based 
on a system of matrix equations, it is evident that the compact matrix formulation 
(CMF) of the problem has as its counterpart a conventional formulation (CF) of 
the system of difference equations. For example, in the case of Dirichlet conditions 
this CF is related to a “big” symmetric matrix b operating on a vector of Ix m x n 
unknowns. One can prove in a rather direct but tedious fashion that b is a block 
tridiagonal matrix of order 1 x m x n whose “elements” are themselves block tri- 
diagonal matrices of order 1 x m, while the “elements” of these latest matrices are 
conventional tridiagonal matrices of order 1. 

In trying to determine error bounds of the solution in the case of CMF algo- 
rithms, as well as their error-propagating features, one could perform an error 
analysis which combined with the built-in accuracy characteristics of the machine 
would classify them with respect to numerical reliability. For such an analysis, tools 
and techniques associated with conventional forms of matrix computations could 
be employed if each step of the CMF algorithm is “translated” into the equivalent 
form of the CF algorithm. 
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However, such a detailed and probably difficult error analysis will not be carried 
out in this paper. 

Instead, the numerical reliability of the algorithm will be judged according to the 
value of the spectral condition number (SCN) of the “‘big” matrix which for a 
method for solving systems of linear equations represents a more or less acceptable 
approach. 

The spectral condition number (SCN) of a matrix B is defined as 

SCN(8)2 = max I/Z(B’B)l/min IL(L?‘B)I, (lOa) 

where ’ denotes the transpose matrix and l(B’B) an eigenvalue of 8,8. When 
symmetric, (lOa) is equivalent to 

SCN(B) = max /L(B)l/min I%(B)l. 

In either case of CMF or CF algorithms, the eigensolutions constitute a basis for 
expressing the ensemble of unknowns and this intrinsic property of the model’s 
eigensystem does not depend on any particular formulation. This suggests that the 
correspondence between the two representations of the eigensystem in compact and 
conventional form, might be used to determine the eigenvalues and eigenvectors of 
the “big” matrix by taking advantage of the solution method associated with the 
CMF algorithm. 

In studying such a correspondence, an eigenvector of the above mentioned ‘“big” 
matrix 5 associated with a certain eigenvalue /z is regarded not as a column sf 
lx m x n elements but as a sequence of n matrices Ek (k = I, 2, . . . . n), each one 

aving 1 rows and m columns. 
In order to determine the elements of this eigenvector, one should use the 

equation (3) itself and put Ek and 2 . Ek in place of the matrices #k and 
respectively. One next sets Ek equal to wkij( Ui V’i ), where wkii is a scalar dependi 
only on k for a definite pair of indices ij while the symbols U, and Vi have 
following meanings: 

Ui = the common ith eigencolumn of all the A matrices which in the matrix 
system (3) premultiply the unknown 6s. 

V,’ = the common jth eigenrow (left-hand eigenvector) of all the A rnat~~ccs 
which in the matrix system (3) postmultiply the unknown 4’s. 

With the above choice for the matrices Ek, one can prove by direct substitu- 
tion in (3) that the conventional system relating all the q elements of the emerging 
M matrix equations has exactly the form (9) with ( Yk _ r )ij, ( )ii, (Yk, l)ii replaced 
by wk- 1ij, wkO, wk+ lli, respectively, while 2.. wkii takes the p of (U-l RHSk V),. 
This, in fact, means that the n eigencolumns and the corresponding rz eigenvalues 
of the conventional system (9), when used in conjunction with Ui and Vi, lead to 
the n eigencolumns and the corresponding eigenvalues of the “big” matrix b whit 
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are associated with a definite pair of indices ij. Proceeding in this way, all the 
Ix m x n eigencolumns and eigenvalues of the “big” matrix can be found. 

The above approach for determining the eigensystem of the “big” matrix extends 
the scope of a similar approach presented in [l] which concerns the non-zero 
solution of the matrix equation Ad + qSB= 1.4 and its correspondence to the 
eigensystem of the “big” conventional matrix. 

Similar considerations applied to problems with periodic or Neumann conditions 
help to determine the eigensystem of these problems as well. 

For k,, k,, and cr constants and Dirichlet conditions on the faces z=z,, and 
z = z0 + c, the matrix of the conventional system (9) is symmetric and consequently 
its eigenvalues are real. 

More precisely, one can prove, after applying the already sketched procedure, 
that 

n,,(D) = Cl + 2{ c3 cos[in/(Z+ l)] + c2 cos[jx/(m + l)] 

+ cd cos[kn/(n + l)]} 

+4{c, cos[in/(E+ l)] cos[jn/(m+ l)] 

+ c7 cos[jx/(m + l)] cos[kz/(n + l)] 

+ c6 cos[kz/(n + l)] cos[irr/(L + l)} 

+ SC, cos[in/(Z+ l)] cos[jz/(m + l)] cos[kn/(n + l)]. (11) 

In the above formula, c,, . ..) cs (see Fig. 1) are constants since k,, k,, and (T are 
now independent of z. When periodic or Neumann conditions on the faces z = z,, 
and/or z = z0 + c prevail then for k,, k,, and cr constants, the eigenvalues of the 
conventional system (9) are still real, since the coefficient matrix of the system in 
question is now of the type B or C and it is known (see Appendix) that the eigen- 
values of such matrices are real. 

For the numerical experiments considered in this paper, the boundary conditions 
are of the Dirichlet type and the problems are of such a character that t(z) = q(z) = 
c(z) = /? ( = constant) while a(z) stands for another constant function of z taking 
only one of the values - 1, 0, 1 at a time. Under the above assumptions the quan- 
tities cr, . . . . cs (see Fig. 1) are also constants and are given as follows: 

cl = -72OOp + 1000~ 

C? = cg = cq = 7208 + lOOa 

c5 = cg = c7 = 216/?+. 10~ 

cg = 36/l+ c. 

(12) 

Using the latest expressions for cr, . . . . cg in (1 1 ), one can compute the value of 
the & eigenvalue of 8. 
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The results is the following: 

&,(b) = - 7200/l + 1000~ 

t-2(7208+ 1OOo){cos[irr/(1+ l)] +cos[j-n/(m+ l)] 

+ cos[kn/(n + l)] > 

+ 4(2168+ lOa)(cos[i~/(l+ 1)] cos[jn/(m + l)] 

+ cos[jn/(m + I)] cos[kn/(n + I)] 

+ cos[kz/(n + 1)] cos[i71/(1+ l)] > 

+(36~+~)cos[in/(l+l)] cos[jrc/(m+ l)] cos[kr+‘(n+ 1)-J (13) 

When I= m = n, b = (n + 1)2, and B = -1, 0, 1, i.e., for pdes of the type 
CJ . cp = f with Dirichlet boundary conditions on the faces of the unit cube, a simple 
program in FORTRAN was written in order to find SCN(fi) for n -I- 1 = 4, 8, and 
16. In this way the values 3.30 + 0.10, 11.98 f 0.39, and 46.59 & 1.56 for IZ + 1 = 4, 8, 
and 16, respectively, were determined, in which the influence of o-values is seen to 
be insignificant. The above three groups of SCNs are taken as the most 
unfavourable error-magnifying factors of the algorithm. When these numbers are 
combined with the fourh-order accuracy in the right-hand side of the discrete model 
employed, they lead to the numbers 0.013 (= 3.30 x 0.254), 0.003 ( = 11.98 x 0.1254), 
and 0.0007 ( =46.59 x 0.06254) for n + 1 = 4, 8, and 16, respectively. These nu 
are taken as representing the accuracy of the results. 

For 7-point finite difference approximations and k,, k,, and 0 constants, i.e., for 
the usual case of the difference equations in 3D with Q(h4) truncation error, the 
matrix equation for Dirichlet boundary conditions which corresponds to (3) is of 
the following type: 

The quantities ci, c2, c3, c4 (see Fig. 1) are the only ones which differ fro 2X3-0 

and one can prove that 

c: = -2(k,/h,2). [(k,/k,) . (h@S;) + (k,/k,) . (A:@;) + l] i- 0 

c2 = kl~f)~ uqkz). wq) 

~3 = (k/h:) . (k,/k). (%/h:) 

c4 = k,lh;. 

The spectral condition number of the “big” system which corresponds to the 
IZ matrix equations (14) is again given as SCN(b) = max //2kii(fi)j/min l/2,,(8)], 
where in the present case 

Akii(D) = c, + 2{ c3 cos[in/(1+ l)] + c2 cos[jn/(m + I)] + c4 cos[kn/(n -I- I)] > 

581:88/l-6 
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or, when k,/hz = ky/hz = k,/h f = p, 

/z,,(d) = -6/l + r~ + 2~{cos[iz/(Z+ l)] + cos[jn/(m + l)] + cos[kz/(n + l)]}. 

The three groups of SCNs for the case of 7-point finite difference approximation 
schemes when n + 1 = 4, 8, and 16 are now represented by the numbers 5.85 f 0.17, 
25.29 f 0.83, and 103.17 + 3.46, respectively. The latest three groups of SCNs are 
again taken as the most unfavourable error-magnifying factors of the algorithm 
and, when combined with models of second-order accuracy in the right-hand 
side, lead to the numbers 0.36 (= 5.85 x 0.252), 0.39 (=25.29 x 0.1252), and 0.40 
(= 103.17 x 0.06252) for n + 1 = 4, 8, and 16, respectively. These numbers represent 
(as in the case of models with fourth-order accuracy in the right-hand side) the 
accuracy of the results and it is seen that their value is roughly constant. This 
means that when the influence of 0 on SCN is insignificant, the SCNs of 3D discrete 
models based on 7-point finite difference approximations are still inversely propor- 
tional to h2, as are the SCNs of 2D models constructed by means of 5-point finite 
difference approximations [Z]. 

Before closing this section it seems appropriate that one should give, at least for 
the examples considered in this paper, the number of floating point operations 
(FPOs) as a function of the indices I, m, and n whose product is equal to the number 
N of unknowns, so that comparisons to other algorithms can be made. 

Towards this end, note that the main computational stages in solving the system 
of discrete equations for pde (1) when Dirichlet conditions prevail and after the 12 
Ix m matrices RHS, (k = 1, 2, . . . . n) have been formed, are the following: 

Stage I. Perform y1 matrix transforms of the type URHS, V, where U and V 
denote symmetric orthonormal matrices of order I and m respectively, while RHS, 
denotes an Ix m matrix with elements dependent on the values of f(x, y, z)-see 
Fig. l-at “level” k. 

Stage II. Solve Ix m tridiagonal systems of type (9) each one having IZ 
unknowns. 

Stage III. Perform IZ matrix transforms of the type Uul, V with ul, a Ix m 
matrix of known elements. 

When no FFT algorithms are used, the first half of each of the n matrix trans- 
forms of Stage I which leads to the Ix m matrix U RHS, requires Z x m(Z. Muls + 
(I- 1) . Adds) with Muls and Adds standing for multiplications and additions, 
respectively, when of course the elements of U have been computed. 

However, when I+ 1 is a power of 2 the sine transform which gives the elements 
of the jth column of URHS, is calculated by means of a special procedure 
described in [3]. 

This is done after forming an auxiliary sequence having I+ 1 terms whose real 
part is composed of the differences between two consecutive odd-numbered 
elements of the jth column of RHS,, while its imaginary part is composed of the 
even-numbered elements contained between them. 
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Each of the 1 terms of the sine transform which corresponds to an element of t 
jth column of URHS, is finally calculated by a linear combination of real an 
imaginary parts of the Fourier transform of a suitable complex sequence of len 
(i+ 1)/2, which is gradually formed from the previously mentioned auxiliary one. 

When the butterfly scheme for computing FFTs is used, it is known that the 
calculation of the Fourier coefficients of an (I + 1)/2-length sequence requires 

i.e., 

(l+ l)[log,(l+ l)- l] .Muls+ 1.5(1+ l)[log,(l+ I)- l] .Adds 

[(I + 1)/4] . log, [ (I + 1)/2] complex multiplications plus 

[(I + 1)/2] . log, [ (I + 1)/2] complex additions Ill61 

Based on the procedure presented in [3] and taking into account the fact that 
the final expression giving the sine transform terms is composed of an antisym- 
metric part and a symmetric part, the total number of FPOs required to form the 
elements of the jth column of U RHS equals 

(I+1)~log,(l+1)+1/2]~Muls+(I+1)[1.5log,(l+l)f7/2~~Adds. (46) 

At this point it must be noticed that the number of FPOs per subdivision ’ 
is given in [12] as [log,(Z+ l)- l/2] .Muls + [1.5 log,(l+ 1) + 5/2] .Adds, 
in effect means that the author’s routine for calculating sine transforms is less 
efficient than the corresponding routine associated with the numerical cx~erime~ts 
presented in that paper. 

Consequently the data quoted in Tables I, II, III, and IV refer to a corn 
program which requires 

in order to calculate the elements of thejth column of URWS,. 
From the previous analysis one sees that the author’s programme for the first 

half of each of the n transforms of Stage I requires m s (I + I )[log,(l f P ) + 
0.51 .Muls + m(l+ 1)[1.5 log,(l+ 1) + 3.51 .Adds when FFT algorithms are 
employed. 

Using exactly the same kind of arguments it is seen that the second half of each 
of the IZ transforms of Stage I which leads to the Ix m matrix (U RI-IS,) V requires 
Ex m(m . Muls + (m - 1) .Adds) when no FFT algorithms are used, 
l~(m+1)[log,(m+1)+0.5]~Muls+I~(m+1)[1.5log,(m+1)+3.5]~Adds when 
FFT algorithms are employed. 

In finding the number of floating point operations needed for Stage II, it is 
noticed that for Dirichlet conditions and when k,, k,, o-see (1 )-are constants, 
only two coefficients are computed for each of the n symmetric tridiagonal systems 
(9), since all the diagonal elements of the coefficient matrix are equal and the same 
applies to the non-zero off-diagonal ones. 
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Provided that the eigenvalues which appear in the formulas for calculating these 
diagonal and off-diagonal elements have been computed already (see Appendix), 
one needs only 2 . Muls + 4. Adds to form the coefficient matrix for the system in 
question. 

The solution of each of the Ix m tridiagonal systems (9) which will give the y1 
unknown quantities ( Yk)ij (k = 1, 2, . . . . n) requires 3(n - 1). Muls + 3(n - 1). Adds 
+ (2n - 1) . Divs-see [ 15]-so that, for Stage II, one needs 32 x m(n - 1) . Muls + 
3Zxm(n-1)~Adds+Zxm(2n-1)~Divs+2Zxm~Muls+4Zxm~Adds (Divs 
stands for divisions). 

Stage III is identical to Stage I as far the number of FPOs is concerned and 
consequently the numbers of floating-point operations for this stage are given by 
the corresponding expressions for Stage I. 

When either I+ 1 or m + 1 or both are powers of 2 and FFT algorithms are 
applied, it is necessary to multiply the elements of U Yk I/ by l/8(1+ 1) or 
1/8(m + 1) or l/64(1+ l)(m + l), respectively, to get the correct results, which 
obviously means that the total number of multiplications is increased by Z x m x n 
in these cases. 

Summarizing, one can give the following expressions for the required FPOs: 

FPOs(no FFTs} = (Zxm xn). [21+2m+ 3- l/n).Muls 

+ (2Z+ 2m - 1 + l/n) . Adds + (2 - l/n) . Divs] (17) 

FPOs{withFFTs}=(Zxmxn)~[6+(1/Z+l/m)+2(1+1/Z)log,(Z+1) 

+ 2( 1+ l/m) log,(m + 1) + l/n] . Muls 

+(Zxmxn)~[17-t7(1/Z+l/m)+3(1+1/Z)log,(Z+1) 

+ 3( 1 + l/m) log,(m + 1) + l/n] . Adds 

+ (Ix m x n) . [2 - l/n] . Divs. (18) 

When Z x m x n = N ‘j3, (17) and (18) be written as follows: 

FPOs{noFFTs}=N~(4N’~3+3-N~1~3)~Muls+N~(4N1~3-1+N~‘~3)~Adds 

+N.(2-N-1’3).Divs UW 

FPOs{withFFTs}=N~[6+N~“3+4(1+N~‘~3)log,(l+N1’3)]~Muls 

+N~[17+15N-“3+6(1+N-“3)log,(l+N”3)]-Adds 

+N.[2-N”3].Divs. (18a) 

Expressions (17) and (18) may be used to compare the performance of the algo- 
rithm presented in this paper to other algorithms on the basis of operation counts, 
although one should have in mind that in stating (17) the equality of absolute 
values of sin[ij,/(Z+ l)] and sin[i(Z+ 1 -j) n/(Z+ l)] or of sin[ij,l(m-t l)] and 
sin[i(m + 1 -j) n/(m + l)] was not taken into account. 
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Other factors which influence the solution time as, e.g., the total number of data 
transfers required, the structure of the compiler used, as well as the ~orn~~ter 
architecture, have not been considered. 

POSSIBILITY OF AN EXTENSION 

The solution method introduced in the preceding sections for pdes of the type (1) 
in 3D rectangular parallelepipeds, can also be used to solve pdes of the type 

k(r) . [(l/r) . a(r. acp/av)/ar] + k,(r) @~/a22 

+ kZp) . a$/az2 + p(r) . q =ftz, 7, tg (19) 

in cylindrical domains with an annular cross section, characterised by the relations: 

z,~z~z,+c, o~Tg271, rlgrgiP2. 

Indeed, if the above equation will be first multiplied by P’ and then the varia 
p = ln(r/v,) is introduced, one can see that (19) is transformed to 

E(p) . a%p7/a2 + E,(p) . a2pp? + aWap2 + O(P) . up = .&, T, p), 

where 

In addition, the cylindrical domain with the annular cross section is tra~sf~rme 
to a 3D rectangular parallelepiped such that 

z,~z~z,+c, 05;5271, wrllf”“) 5 P 5 ln(r,lro), 

meaning in effect that the equivalence of problems (1) and (19) is complete. 
Obviously the solution cp related to boundary value problems in cylindrical 

domains is periodic with respect to the angle z and has a period equal to 2.7~ 

APPENDIX 

Expressions concerning the eigenvalues and right eigenvectors for matrices of t 
A, 8, or C type, are presented in Table V. 

In these expressions, v stands for the order of the matrix, Aj denotes thejth eigen- 
value, whereas (X), and (X-l), denote the ij elements of the eigenvector matrix 
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TABLE V 

Matrix CAj- PY2q 

ALP> 41 
B”[P, 41 

CYCP, Yl 

C,ulP, 41’ 

Ct.CP, (II 

cos[jn/(v + l)] sin[.&/(v + l)] 

cos[2(j- 1) n/v] sin[2i(j- 1) n/v + a/4] 

cos[(j- l/2) x/v] cos[(i- 1)(2j- 1) z/2v] 

cos[(j- l/2) n/v] 
l/2 (i = 1) 

cos[(i- l)(Zj- l)n/2v] 

cos[(j- l/2) K/V] sin [ i(2j - 1) n/2v] 

Ct.CP, 41’ cos[(j- l/2) 7c/v] 
sin[Q- 1) n/Zv] 
(-1y’-‘.1/2(i=v) 

sin[@/(v + l)] 

sin[2(i- l)j?r/v + n/4] 

l/2 (j= 1) 
cos[(2i- I)(j- 1) x/2v] 

cos[(2i- l)(j- 1) n/2v] 

sin[(2i- l)jlr/2v] 
(-l)‘-l.l/2(j=v) 

sin[(2i- l)j71/2v] 

C?CP, 41 cos[(j-l)n/(v-l)] cos[(i- l)(j- 1 7c/(v- 1)] 
(-l)j-‘/ Z(j=v) ,: 

and its inverse, respectively. Finally, the symbol ’ stands for the transpose of a 
matrix while, in all cases, the normalizing constant which multiplies the elements of 
X or X-l equals (2/v)“’ except for the matrices A,[p, q] and C f” [p, q], where 
the constant in question equals [2/(v + l)]‘/* and [2/(v - l)]“‘, respectively. 

The elements of the inverse eigenvector matrix for Ck”[Ip, q] and also the 
elements of both the eigenvector matrix and its inverse for CF”[p, q]‘, have not 
been included in Table V. 

The inverse eigenvector matrix for C t”[p, q] is equal to the transpose of its 
eigenvector matrix after its first and last columns have been divided by 2. 

The eigenvector matrix for CtU[p, q]’ equals the eigenvector matrix for 
CtU[p, q], provided that its first and last rows have been divided by 2, while its 
inverse is identical to the transpose eigenvector matrix of CiU[p, q]. 
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